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A conjugated problem of heat conduction for two hollow cylinders that are in close contact, with one consist-
ing of a reagent, has been solved analytically. The problem has been solved by the backward method under
boundary conditions of the first kind. The critical conditions of thermal explosion were investigated as func-
tions of the parameters of a reagent and of an inert body. An engineering method for determining the critical
conditions of a thermal explosion is suggested.

The development and application to practice of explosives culminate successively only on condition that their
technological safety is ensured. This fact has stimulated the emergence of a large number of scientific studies aimed
at solving various problems of technological safety. The sensitivity of explosive systems to heat characterizes their
safety in the process of production. The results of studies of the thermal sensitivity of reagents carried out for years
were generalized in reviews such as, for example, [1].

In the majority of cases, an explosive chemical reaction is initiated in the apparatuses that process explosives.
In view of this, in modeling the problems of technological safety, it is necessary to take into account the influence of
the inert walls of an apparatus or of its elements on the thermal processes proceeding in the reagents. Such an account
can be taken in solving a conjugate problem of heat conduction. For a plane reagent, such a problem under boundary
conditions of the first, second, and third kinds was considered in [2–4].

In the present work, we consider a thermal explosion of a reagent in the form of a hollow cylinder that is in
close contact with another inert hollow cylinder.

The statement of the problem amounts to the following: there is a system consisting of two infinite hollow
cylinders, where one cylinder is located inside the other. The outer hollow cylinder with outer and inner radii R2 and
R1 consists of an inert material. The inner cylinder consists of a condensed explosive, and it is limited to the radii
R0 and R1. The side surfaces of the cylinders at r = R1 are in close contact with each other. On the surfaces of the
cylinders having radii R0 and R2, constant temperatures T0 and T2, respectively, are maintained. We consider the case
where T0 > T2. In the condensed explosive, an exothermal reaction of zero order proceeds, the rate of which  is de-
scribed by the Arrhenius equation. The volumetric power of heat release as a result of the chemical reaction is defined
by the expression qv = QvK0 exp [−E/(RT)]. On the surface where the explosive is adjacent to the inert wall there is
a perfect thermal contact. The aim of this work is to investigate the critical conditions of thermal explosion of a re-
agent in a steady-state statement.

Introducing dimensionless variables and parameters θ = E(T − T0)/(RT0
 2), θ1 = E(T1 − T0)/T0

 2, ξ = r/H, V =
E(U − T0)/(RT0

 2), k = R0
 ⁄ R1, H = R1 − R0, k0 = k/(1 − k), k1 = 1/(1 − k), k2 = R2

 ⁄ H, Kλ = λ1
 ⁄ λ2, and Fk = QvK0 exp

[−E/(RT0)]EH 2/(λRT0
 2) and applying expansion of the exponent in the Arrhenius equation according to Frank-Kamenet-

skii [5], we can formulate the mathematical model of the problem in dimensionless form as
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 + Fk exp θ = 0 , (1)
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θ = 0   at   ξ = k0 , (3)

θ = V   at   ξ = k1 , (4)

dθ
dξ

 = Kλ 
dV
dξ

   at   ξ = k1 , (5)

V = θ2   at   ξ = k2 . (6)

In going to dimensionless variables and parameters, the temperature on the reagent surface T0 was used as the
scalar one, whereas the width of the annular layer of the reagent H = R1 − R0 was taken as the characteristic dimension.

A stationary solution of Eq. (1) that satisfies the boundary conditions is possible only when Fk < Fkcr; the ab-
sence of this condition is taken to be a thermal explosion [5]. Thus, the finding of the critical conditions of a thermal
explosion amounts to the determination of Fkcr by solving a system of equations (1)–(6). However, the solution of a
relatively complex mathematical model of the problem does not allow one to obtain, in an explicit form, an expression
to determine Fkcr.

In recent years, to solve complex boundary-value problems of heat conduction, backward methods have been
used [6–8]. In contrast to straightforward methods, in which the temperature field of an object is determined, in the
backward methods the values of the temperatures of an object are given on characteristic sites and the parameters or
coefficients entering into the boundary conditions or into the heat-conduction equation are sought.

The system of equations (1)–(6) is solved by the backward method, that is, the value of a dimensionless tem-
perature θ1 on the contact surface (ξ = 1) is assigned, and two independent problems are solved for the reagent and
inert body, which are defined by the following equations:
for the reagent

d
2θ

dξ2
 + 

dθ

ξdξ
 + Fk exp θ = 0 , (7)

θ = 0   at   ξ = k0 , (8)

θ = θ1   at   ξ = k1 , (9)

for the inert body

 
d

2
V

dξ2
 + 

dV

ξdξ
 = 0 , (10)

V = θ1   at   ξ = k1 , (11)

V = θ2   at   ξ = k2 . (12)

By solving systems (7)–(9) the values of Fkcr and dθ ⁄ dξ at ξ = k1 are determined and the solution of system
(10–(12) yields the value of dV/dξ at ξ = k1. The solutions of the two problems are conjugated by Eq. (5), from
which the value of Kλ is calculated. Computational operations are continued until the calculated value of Kλ coincides
practically with the real one.
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We will investigate the problem of a thermal explosion of a reagent with the aid of the above-given system
of equations (7)–(9). The solution of Eq. (7) is given in [5] in the form

exp θ = a ⁄ [ξ
2
 cosh

2
 (µ ln ξ − b)] . (13)

On the strength of boundary conditions (8) and (9), Eq. (13) yields

 cosh
2
 (µ ln k0 − b) = a ⁄ k0

2
 , (14)

cosh
2
 (b − µ ln k1) = a exp (− θ1) ⁄ k1

2
 . (15)

In Eq. (15), the evenness of the function of the hyperbolic cosine is used, cosh x = cosh (−x). Excluding the integra-
tion constant b from (14) and (15) yields an equation that relates the parameter Fk to the integration constant a:

µ = arcosh (a0.5 ⁄ k0) + arcosh 



[a exp (− θ1)]0.5 ⁄ k1




 . (16)

Since µ2 = aFk/2 [5], the solution of (16) for Fk gives

Fk = 2 



arcosh (a0.5 ⁄ k0) + arcosh [a exp (− θ1)]0.5 ⁄ k1





2
 ⁄ (a ln

2
 k) . (17)

With the inverse function of the hyperbolic cosine being replaced by a logarithmic one, Eq. (17) can be writ-
ten in a more compact form:

Fk = 2 ln
2
 (pq) ⁄ (a ln

2
 k) , (18)

where p = x + (x2 − 1)0.5; x = a0.5 ⁄ k0; q = z + (z2 − 1)0.5; z = [a exp (−θ1)]0.5 ⁄ k1; arch 



[a exp (− θ1)]0.5 ⁄ k1



 = ln q,

and arcosh (a0.5 ⁄ k0) = ln p.

The critical value of the parameter Fkcr is determined by the maximum of the right-hand side of Eq. (18) as
a function of a by using the iteration method.

The estimation of the correspondence of the assigned value of θ1 to its real value is made with the aid of Eq.
(5), which involves the derivatives dθ ⁄ dξ and dV/dξ at ξ = k1. It is more convenient to differentiate Eq. (13) after
logarithms have been preliminarily taken in it:

θ = ln a − 2 ln ξ − 2 ln [cosh (b − µ ln ξ)] . (19)

Differentiation of Eq. (19) at ξ = k1 leads to the expression

dθ ⁄ dξ = − 2 [1 − tanh (ln q) µ] ⁄ k1 , (20)

where it is taken into account that b − µ ln k1 = ln q.
We now pass to consideration of the mathematical model of an inert body for determining dV/dξ. The solu-

tion of Eq. (10) has the form

V = C2 + C1 ln ξ . (21)

Using boundary conditions (11) and (12), we obtain

θ1 = C2 + C1 ln k1 , (22)

θ2 = C2 + C1 ln k2 . (23)
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Having eliminated C2 from these equations, we obtain that C1 = (θ1 − θ2)/[ln (k1
 ⁄ k2)]. The differentiation of Eq. (21)

at ξ = k1 yields an expression for determining the temperature gradient on the surface of an inert material:

dV ⁄ dξ = (θ1 − θ2) ⁄ [ln (k1
 ⁄ k2) k1] . (24)

Let, for brevity, the left-hand sides of Eqs. (20) and (24) be designated as g1 and g2, respectively. Then the given
value of θ1 corresponds to reality if g1

 ⁄ g2 F Kλ.
In conclusion, we will consider the solution of the engineering problem of safety.
Statement of the Problem. There is a system consisting of two cylinders in close contact (a cylinder in a

cylinder). The inner cylinder is a reagent, whereas the outer one consists of an inert material. It is necessary to deter-
mine the critical conditions of safety at Kλ = 0.5, 1.0, and 2.0. Let T0 = 430 K, T2 = 300 K, R0 = 0.10 m, R1 = 0.15
m, H = 0.05 m, R2 = 0.20 m, H1 = 0.05 m, and E/R = 24,250 K.

Solution. We calculate the values of θ2 = E(T2 − T0)/(RT0
 2), k = R0

 ⁄ R1, k0 = R0
 ⁄ H, k1 = R1

 ⁄ H, and k2 =
R2

 ⁄ H from the initial data of the problem. We select θ1 using the inequality 0 < θ1 < θ2. The critical condition
of safety is determined by the value of Fkcr, which is calculated from (18) by the method of successive approxima-
tions. The selection of the variants of θ1 is over as soon as g1

 ⁄ g2 F Kλ. The values of g1 and g2 are determined from
Eqs. (20) and (24). The results of the calculations are presented in Table 1, from which it is seen that the critical pa-
rameters depend substantially on Kλ. When Kλ < 1, the material of the inert cylinder, relative to the reagent, is a ther-
mal insulator, whereas at Kλ > 1 it is a heat sink.

If a reagent is in close contact with a steel wall, the heat-conduction ratio Kλ has a value of order 400.
Therefore, in steel apparatuses that process explosives, the walls do not possess insulating properties, and the value of
T1 is practically equal to T2.

Thus, a conjugate problem of a thermal explosion of explosives having the form of a hollow cylinder has
been solved analytically by the backward method. It is shown that application of this method allows one to replace the
solution of a complex conjugate problem by solutions of two independent problems for a reagent and an inert body.
An engineering method of calculation is suggested for determining the critical conditions of a thermal explosion and
the influence of the parameters of the reagent and inert body on the critical conditions is investigated.

NOTATION

C1 and C2, integration constants in the problem for an inert body; E, activation energy, J/mole; H and H1,
thicknesses of the annular layer of a reagent and inert material, m; K0, pre-exponential factor, sec−1; Qv, thermal effect
of reaction per unit volume, J/m3; R, universal gas constant, J/(mole⋅K); R0, R1, and R2, radii of cylinders, m; T, cur-
rent temperature of a reagent, K; T0, T1, and T2, temperatures of the inner, contact, and outer surfaces of cylinders, K;
U, dimensional temperature of inert material, K; V, dimensionless temperature of inert material; θ and θ1, dimension-
less temperatures (current one and that on a contact surface); λ and λ1, thermal conductivities of a reagent and inert
material, W/(m⋅K); ξ, dimensionless coordinate. Subscripts: cr, critical; v, volume.
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